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The Onsager reaction field as a screened self-interaction 
in refractive index theory 
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Copenhagen 0, Denmark 
$ Department of Mathematics, University of Manchester Institute of Science and Tech- 
nology, PO Box No 88, Sackville St, Manchester M60 1QD. UK 

MS received 6 October 1971, in revised form 7 February 1972 

Abstract. We give a microscopic derivation of a formula of Bottcher’s type for the refractive 
index. In this a macroscopic cavity field replaces the Lorentz internal field and the polariz- 
ability is modified by many-body self-interactions. These combine both an Onsager type 
reaction field and a screened radiation reaction. The microscopic argument resolves 
apparent conflict between the two different macroscopic approaches to the internal field 
problem. 

The real part of the reaction field is well approximated by a term involving only the pair- 
correlation function explicitly ; but multiple scattering processes of all orders are summed 
and the whole hierarchy of correlations is concealed in an additional factor depending on 
the refractive index. This reaction field is a new result which accounts naturally for the 
choice of cavity size in the macroscopic theory. 

The formula applies to a fluid of isotropically polarizable, nonpolar molecules. It will 
be more accurate than the Lorentz-Lorenz relation when the refractive index is close to 
unity. Additional multiple scattering terms not of the reaction type correct the formula and 
these make interpretation of experiments in terms of a simple BGttcher formula misleading 
for larger refractive indices. An analysis of experimental data for liquid argon seems to 
support these conclusions. 

1. Introduction 

The problem of the internal field inside a dielectric which is excited by an external 
field (oscillatory or not) has been a controversial one ever since the original work of 
Mossotti (1850), Clausius (18791, Lorentz (1880) and Lorenz (1880). Many-body theory 
solves the problem implicitly (Yvon 1937, Mazur and Mandel 1956, Bullough 1962, 
1968, Bullough et al1968, Bullough and Hynne 1968) by introducing the usual hierarchy 
of intermolecular correlation functions ; but it does not free our understanding from 
sources of controversy because no very simple form of internal field factor emerges. 
For the same reason experimental results are not easily compared with the formulae 
of the theory. The purpose of this paper is to resolve an apparent conflict between 
two distinct and historically important ‘macroscopic’ approaches to the theory of the 
internal molecular field by showing that both are contained within the same microscopic 
theory. In this way we obtain a formula for the refractive index or dielectric constant 
which can be used to interpret experimental data as we shall show for liquid argon. 
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The two different approaches can be labelled succinctly as those of Lorentz (1909) 
on the one hand and of Onsager (1936) on the other. We shall consider a fluid of iso- 
tropically polarizable molecules with number density n and polarizability a(w) at the 
frequency o. Lorentz’s formula for the refractive index m(o) is the famous Lorentz- 
Lorenz relation 

Modern methods (Darwin 1924, Born and Wolf 1959, Bullough 1968, to be referred to 
as I) justify this formula completely for a continuous distribution of molecules ; but the 
continuous distribution means that from the microscopic point of view all intermolecular 
correlations are ignored (Rosenfeld 1951, I, Bullough 1969b). 

However, Lorentz simply adopted a ‘macroscopic’ model of a dielectric in which 
each molecule is supposed to be exposed to a total field consisting of the macroscopic 
(Maxwell) field in the dielectric corrected by the presence of molecular dipoles. The 
more significant part of this correction is due to distant dipoles. The total field due to 
these was computed according to macroscopic dielectric theory as the field inside a 
spherical cavity of arbitrary radius centred on the reference molecule. The dipolar 
distribution outside the sphere carries with it an effective charge on the surface of the 
sphere and this surface charge corrects the field at the centre of the sphere from the 
Maxwell value d to f(m2+2)6, that is, the field is enhanced by the ‘Lorentz internal 
field factor’ f (mz  +2). Formula (1.1) then follows. 

It is important to note that Lorentz’s field is computed for the dipolar distribution 
which exists in the presence of the reference molecule. The spherical cavity is not a 
physical cavity and indeed Lorentz further corrected his field by a local field supposedly 
due to the actual local molecular distribution inside the sphere. By moderately sophisti- 
cated microscopic arguments Rosenfeld (1951) justified this approach by finding that 
(1.1) must be replaced by 

where J ( o )  is an integral involving the two-body intermolecular correlation function 
gz(r), and k o . =  we-’.  We now know from the exact microscopic theory (eg Mazur 
and Mandel 1956, Bullough 1962, 1967 to be referred to as II), however, that J ( o )  is 
only the first term of an infinite series of terms involving g3(x,, x2,  x3), g,(x, , xz ,  x3 ,  x,), 
etc, that is, involving simultaneous correlation of three, four, and any number, of 
particles. Partial summation and rearrangement of this series enables us to change the 
apparent form of this generalization of the Lorentz-Lorenz formula (1.2). This is why 
Lorentz’s approach is not necessarily the best macroscopic approach and it is this 
which is also the key to the development exhibited in this paper. 

We should add at this point that the small purely imaginary term in the denominator 
of (1.2) is of great theoretical and practical interest; it describes the effect of radiation 
reaction on an individual radiating dipole; and though small (- in Re@) away 
from the resonances of a(w)) it makes a very significant contribution to the total optical 
scattering cross section of the many-particle system (Bullough et al 1968, to be referred 
to as 111, Bullough and Hynne 1968, to be referred to as IV). This kind of radiation 
reaction field exhibited in (1.2) figures greatly in the theoretical analysis we give below. 
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Equation (1.1) on the other hand shows correctly that there is no scattering from the 
continuum. 

An apparently quite different approach to a continuum model is that of Onsager 
(1936) who pointed out that in any such model of dielectric polarization the internal 
field acting on a single molecule should be split into two parts: a cavity field which is 
the field which would exist inside a real physical cavity surrounding the molecule in 
the absence of that molecule, and a second reactionjeM correcting the cavity field by 
the polarization of the medium induced by the molecular dipole which is actually present 
in the molecule inside the cavity. 

Onsager was concerned with polar liquids where the distinction is essential because, 
as he showed, only the cavity field influences the orientation of the permanent dipole. 
The point of view is apparently applicable to any dipole inside the cavity, however. 
either permanent or induced. In the model introduced by Bell (1931) and Onsager 
(1936) and adopted by Bottcher (1942, 1952) one considers a molecule a t  the centre of 
a spherical cavity (radius a) in a continuum of refractive index m and dielectric constant 
m2. The molecular dipole moment p inside the cavity induces a reaction field R = fp 
(say) at the site of the molecule andfis  given by (Onsager 1936) 

We shall refer to this field R as the ‘Onsager reaction field’. I f  the electric field in the 
medium at points distant from the cavity is uniform and denoted E, it is 3ni2(2m2 + 1 ) - ’ 8  
inside the empty cavity. When this is combined with the reaction field one obtains the 
relation 

This form (1.4) with f given by (1.3) and i i  a constant has been introduced and 
extensively used by Bottcher (1952, and earlier works cited therein). We shall refer to i t  
as the ‘Bottcher formula’ and the underlying model as the cavity model. In equation (1.4) 
the cavity field replaces the Lorentz internal field and the reaction field modifies the 
polarizability, which is replaced by an effective polarizability 

a* = r (1  -fa)- 1. i 1.5) 

This polarizability a* includes the effect of the interaction of the molecule with itself 
via the surrounding dielectric. 

The two equations (1.1) and (1.4) have very different forms?. I t  is the main purpose 
of the paper to show that in a more general formulation of the theory there is nevertheless 
no actual conflict between the two expressions. However, this means extending both 
formulae, and (1.1) and (1.4) as they stand are certainly discrepant: we now show that 
a very different dependence on density in these two expressions at low densities is 
potentially important. We transform the Lorentz-Lorenz relation to the Bottcher 
form (1.4): the reaction term in the denominator of (1.5) for the Lorentz-Lorenz relation 

+ Although the right side of (1.2) is of the form of (1.5) the terms in the denominator are of a rather different 
character from that ofthe termfz in (1, j ) .  For only the radiation reaction term is a self-interaction of the type 
of,fu and this term is entirely imaginary. 
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takes the form 

This exhibits the most important difference between the two formulae (1.1) and (1.4) : 
when the radius a of the cavity has a fixed value, as Bottcher (1942, p 947) assumes, the 
Onsager reaction field correction fa in equation (1.3) is linear in nci = (m2 - 1)/4.n for 
small ncr, whereas the reaction field correction (1.6) of the Lorentz-Lorenz relation is 
quadratic in nsr for small ncr. If the reaction field is in fact linear, the experimentally 
determined Lorentz-Lorenz function must increase linearly as a function of n for small 
densities, go through a maximum, and decrease for larger densities (Onsager 1936, 
Bottcher 1952)-unless other corrections to the simple Lorentz model are large enough 
to blur this effect. Experiments (Michels and Botzen 1949) seem to indicate such a 
variation of the Lorentz-Lorenz function and the calculation of de Boer et a1 (1953) 
seems to confirm this for the corresponding Clausius-Mossotti relation. 

In contrast to the Lorentz-Lorenz relation, the Bottcher formula contains a com- 
pletely free parameter a. By a rather crude argument Bottcher (1942, footnote to  p 947) 
concludes that a should be chosen as the (average) molecular radius. Evidently, the 
cavity model needs justification by microscopic arguments and these would then also 
provide an expression for the parameter of the modelt. It is precisely these problems 
we solve in this paper; and we do  this by recasting the microscopic theory into a form 
which generalizes the Bottcher formula (1.4) rather than the Lorentz-Lorenz relation 
(1.1). This reformulation follows in a very natural way from the ‘screened’ microscopic 
theory which has been reported (Hynne 1970, to  be referred to as V). Therefore we now 
briefly describe some particular features of the theories 111, IV and V which are essential 
to the understanding of the argument of this paper. 

Microscopic theories (Yvon 1937, Hoek 1939, Mazur and Mandel 1956, Bullough 
1962, 1965, and the references I, 11, 111, IV) usually result in the expression (1.2) with 
J ( o )  a power series in na(o)  involving all orders of intermolecular correlation and thus 
describing all orders of multiple scattering. The papers I11 and IV in particular report 
(in brief) the solution to the whole multiple scattering problem. One result there’; is 
an expression for (m2(o) -  1)/4n as a power series in na(o)  in which the contribution 
to the Lorentz internal field factor is absorbed in a series of integrals which are initially 
conditionally convergent. This is accomplished by first extending the domains of 
integration to include the singularities of the integrands ; then the divergent integrals 
are interpreted in a generalized function sense. A typical divergent integral that appears 
in the theory by this procedure has the form 

Jv F(x, x’ ; o) f (x ’ )  dx‘ 

in whichf(x’) is some function continuous at x. The integration is taken over the 
macroscopic region V containing x. The tensor F(x, x’; o) is a ‘photon propagator’ 
defined by 

exp (ik,r) 
F(x, x’ ; w) zz (VV + k$U) k ,  3 wc-’;r = Ix-x’J (1.8) 

t This problem has also been attacked by Linder and Hoernschemeyer (1967). We comment on their paper 
in the long footnote to p 1288. 
$’ cf equation (1 1) and the definitions (9) and (10) of 111. 
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where U is the unit tensor. By this construction the integral (1.7) is then to be 
interpreted as 

F(x, x‘ ; o ) f ( x ‘ )  dx’ + lim F(x, x’ ; o ) f ( x J )  dx‘. (1.9) 

The first term is the original conditionally convergent integral in which the exclusion 
of a ‘vanishingly small sphere’ L‘ centred on x ensures the convergence. (Below we 
shall usually omit the limit symbols in front of the integrals.) The second integral is 
then dejned as -$nUf(x), and we see that this corresponds to a generalized function 
interpretation of this otherwise divergent integral : for if the integral of F exists i t  must 
be isotropic and its trace is the integral of 

!12 I”-, I.-0 J’. 

v2/x - x’/ - = - 4nqx - x’) 

(cf 111, and again Bullough 1970a, 1970b). This interpretation can be carried systematically 
and without ambiguity through the theory. Evidently it is simply a series of such terms 
which becomes the Lorentz field factor i ( m 2  + 2) in an expression like (1.1)t. 

A second convenience of the theory of great importance for the present derivation 
is to carry radiation reaction through it as one-particle self-correlation. This means 
the interpretation 

F(x,x’; w ) 6 ( x - x ’ )  dx’ = $ k i U  (1.10) 

which is merely the finite part of this otherwise undefined integral. This interpretation 
is consistent with radiation reaction as it is exhibited in (1.2). 

In the papers I11 and IV the long range of the intermolecular interaction (1.8) which 
includes the radiation field forced us to consider macroscopic systems of only finite 
extent. The difficulty this introduces was there isolated in the form of a special class 
of terms we call surface terms: these appear at three-body and all higher orders of 
intermolecular correlation. These surface terms can, however, be summed and concealed 
in the ‘screened’ photon propagator (V) 

.i 

(1 .11)  

This form obviously ‘screens’ scattering processes described in terms of (1.8) so that 
they may be said to be taking place in the medium of refractive index m rather than 
in vacuo. 

To obtain the closed form (1.11) it is necessary to introduce an approximation, the 
bulk approximation described in V. This has the effect of eliminating surface effects 
and making the theory translationally invariant$. We shall call this approximate theory 
the ‘screened theory’. The theory described in 111 and IV employs the unscreened 
(free field) interaction F of (1.8). We call this form of the theory the ‘unscreened theory’. 

t Compare the footnote on p 1285. 
These surface effects depend explicitly on the surface geometry of the macroscopic system. Associated wlth 

them are terms which we call ‘surface terms’ and which do not depend on that geometry (they arise at lower 
rather than upper limits of integrals : lower limits involve points inside the material). In this paper we use 
‘surface terms’ in a narrow sense as  ‘surface terms’ associated with the screening processes converting (1.8) to 
(1.11). There are terms classified as surface terms in 111 and IV which do not contribute to the screening 
process (cf V). 
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The screened theory is developed from the unscreened theory in two stages. The 
first stage can be conceived simply as a rearrangement of the terms of the unscreened 
theory by formulating the results ofthe unscreened theory in terms ofa photon propagator 
F ( x ,  x’ ; o) which can be defined as a series of ‘unscreened’ terms. Thus the formulation 
in terms of .F is entirely equivalent to  the unscreened theory and we shall therefore call 
it the ‘exact screened theory’ and .F(x, x’ ; w )  the ‘exact screened propagator’ in 8 3 where 
frequent reference is made to it. From the intermediate stage the ‘screened theory’ is 
reached by applying what we have called the bulk approximation: this involves in 
particular the replacement of .F(x, x‘; o) (which is a series) by F(x, x’; U), which is 
given as a closed form by equation (1.1 1). Although this replacement makes the ‘screened 
theory’ particularly easy to understand, the existence of the exact screened theory is 
very important for the development of this paper because it enables us to resolve 
certain ambiguities which appear in the screened theory entirely because of the bulk 
approximation. Apart from such ambiguities comparisons show that the bulk approxi- 
mation is, as one would expect, a good approximation but this question still needs 
further investigation. 

The screened theory yields an expression for (m2(o)  - 1)/4n which is analogous to 
that obtained in I11 and IV. But because F replaces F we find a ‘screened Lorentz 
term’ -(4n/3m2)U replacing the - (443)U from (1.9) and a ‘screened self-interaction 
term’ containing a screened radiation reaction $im(o)kiU,  again from a self-correlation, 
replacing (1.10). An important point is that an additional real valued reaction field 
accompanies this screened radiation reaction. The derivation in this article of the 
generalization of the Bottcher formula (1.4) is based on the summation of precisely 
these two types of contributions. Thus the central part of our argument is the summation 
of a double series. This is carried out in a formal way in the following section (4 2) and 
the argument is completed in 0 3 which is entirely devoted to the screened self-interaction. 
In 0 4 the generalized Bottcher formula reached in 0 3 is considered in the light of 
available experimental data. We summarize the results and conclusions of the paper 
in 0 5. 

The main result ofthe paper is the generalized Bottcher formula (3.12) (with associated 
definitions in (3.9b) and (2.9b, c)). It appears in simplified form in (4.1). The complex 
reaction field is exhibited in approximate form in (3.15). 

2. Derivation of the fundamental formula 

An obvious starting point for any semiclassical refractive index theory is the equation 

Pi”(x, W )  = p(x)ct(w) E(x O) + F(x, X’ ; W )  . Pi”(x’; O) dx’ . (2.1) 

Pin(x, o) is the instantaneous dipole density for a system of isotropically polarizable 
molecules of polarizability ct(o) occupying an arbitrary configuration of sites xy. The 
(instantaneous) particle density is 

( ’ J”” 1 

p(x )  = S(x - x y )  (2.2) 
j 

and its ensemble average will be denoted by n ; the system is supposed macroscopically 
homogeneous within a region V and n is independent of x inside V .  Equation (2.1) 
states that the total field polarizing the jth molecule at xf is the sum of the external 
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field E and the field due to all the molecules induced by the dipole density P'"(x', to). 
This field includes the self-field of molecule j by the prescription (1.10). The equation 
(2.1) has been deduced as an approximate consequence of a second quantized theory as 
was reported in 111. 

Equation (2.1) readily yields the generalized Lorentz-Lorenz relation for which i t  I:, 

well adapted: the argument is sketched in 111. But the same equation (2.1) can be recast 
as a screened integral equation and the generalized Bottcher formula can be derived 
from this as we show in 9 3. This indicates the strict equivalence of the two theories and 
as a further check we indicate in 9 3 (in the note below (3.10)) how the arguments for the 
Bottcher formula used there can themselves be used to obtain the Lorentz-Lorenz 
formula from a version of (2.1). 

Rather than attempting to move from one integral equation to another at this stage 
however it is convenient to start instead from one of the simpler results of the screened 
theory : this is the result for the refractive index expressed in terms of the screened photon 
propagator F and was reported in V. The result is 

in which xl(m. w )  = 1 and, for p 3 2 

(2.3b) 

In equation (2.3b) all integrations are taken over all space. The wavevector k ,  has the 
length k ,  = wc- and is orthogonal to the polarization unit vector U but otherwise k ,  
and U have arbitrary directions. Here we use indices to denote position variables: 
F,, E F(x l .x2 ;o ) ,  for example. and the function Y123,,,, = n-PGY123...p depends on 
xl, x 2 . ,  . . , x p  whilst -24123,,,p is the ensemble average of the configurational dependent 
function ?!YF23 , , , p .  which is given by the recurrence relation 

17.4) 

These results reported in V are actually derived from (2.1). The precise details of 
the argument are given in the Appendix to the present paper. We show there that 
(2.1) transforms to the entirely equivalent integral equation exhibited in (3.6). This 
contains the screened photon propagator .F and is the key equation of the whole theory. 
We show in the Appendix also how both equation (2.3) and the associated recurrence 
relation (2.4) follow from the integral equation (3.6) in the bulk approximation. The 
complete argument from (2.1) to each and every result of this paper is therefore available 
on reference to the arguments developed in the Appendix. 

The result (2.3) depends on F rather than .F : it  is to that extent conceptually the more 
simple. We therefore now return to it and will develop it. 

The expression (2.3) is actually a very complicated implicit equation for m given r ,  
n, and the temperature. Because we lack knowledge about the p body correlation 
functions, especially for larger p and in dense fluids, a general solution to equation (2.3) 
is unattainable. However, there are important contributions to each term ~ , ( m ,  (I)) of 
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(2.3) which are (formally) independent of the correlation functions. These are the terms 
with products of powers of the screened Lorentz term and powers of the screened self- 
interaction. The screened Lorentz terms are concealed in the integrals (2.3b) as the 
contributions from the ‘small spheres’ given as we described in $ 1  by 

- 4n 
lim 
0-0 3m2(w) F(x, x’ ; 0) dx’ = - U. 

As in (1.9) the integration in (2.5) is taken over a vanishingly small sphere centred on x. 
Every integral of the multiple integral (2.3b) is then defined as the sum of the contribution 
from the small sphere, defined by (2.5), and the conditionally convergent integral now 
taken over all space outside the small spherical region. We stress that the ‘small spheres’ 
appear for strictly mathematical reasons in a mathematically rigorous argument with 
initially convergent integrals and we nowhere introduce (or need to introduce) any 
physical cavity. 

The screened self-interaction? is formally given by the analogue of (1.10) 

r(w) = F(x, x’ ; w)6(x - x‘) dx‘. (2.6) s 
For the moment it can be thought of as simply the convergent part of the integral which 
is tim(w)kiU. However the integral requires a very careful analysis for its proper inter- 
pretation and we shall defer this until the next section. The problem is that we need to 
isolate a real valued reaction field in the self-interaction as well as the screened radiation 
reaction. 

Our procedure now is to isolate those contributions to (m2 - 1)/4n in (2.1) which do 
not depend explicitly on the correlation functions. We therefore write equation (2.1) 
as 

m2-1 3m2 
-- 4iT 4iT - -L(t, w) + C ( m )  

in which L(t, w) is the double series 
m a ?  

(2.7) 

containing all terms obtained by extracting either the Lorentz term or the self-interaction 
associated with each tensor. The self-interaction is an isotropic tensor: r(w) = r(w)U 
and w = cc(w)r(w), whereas t = $cm-2(o)na(w).  The second term of equation (2.7) is the 
power series in na of the remaining terms from equation (2.1) all of which explicitly 
contain correlation functions 

1 
C(ncc) = C , ( n ~ x ) ~  + C ,  +-C; + -+2- C ,  (nu), + . . . { n (:$ :) ] (2.9a) 

C ,  = u u : I _ d x ’ ~ ( x , x ‘ ; w ) e x p j i m k , .  (x’-x)}(g,(x,x‘)-~) (2.9b) 

t Screening of the self-interaction has been considered in effect by Doniach (1963) in an interesting paper. 
Reference to  the quantal basis of the present theory (eg ref. 111) shows that a result only hazarded by Doniach 
is here proved--namely that (1.10) is ‘screened’ by a factor m(o). 
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C, = U U : ? . _ ~  dx’J^-t dx”F(x ,x ’ ;w) .  F(x’,x”;w)exp{imk,.(x”-x)) 

x (g3(x, XI, x”)-g,(x, x’)-g,(x’, x”)-g,(x”, x ) + 2 j  (2.9~,1 

The integrations with respect to x’ and x” in (2.9b) and ( 2 . 9 ~ )  are taken over all space 
except for vanishingly small spheres centred on x and x’ respectively. (These regions 
are symbolized - u . )  The integral C; is actually strongly divergent at  the lower limit 
x’ 2 x, but we must discuss this problem in the next section. 

There are two kinds of self-correlations in the terms (2.3b). The one we sum here 
connects two successive indices, whereas the second kind connects nonsuccessive indices 
and therefore does not ’cover’ a n  F tensor. I t  is necessary to  integrate all the 8 functions 
out before the small spheres are taken out. In this way one avoids treating a self- 
correlation of the second kind as a self-correlation of the first kind by the limiting process 
in equation (2.5). With this prescription we can now sum the double power series (2.8) 
to all orders. 

The term aijtiwj in (2.8) is of the order p = i+j in nr .  The complete contribution 
Lp(t,  w) to the pth order comes from the term 4n(3m2)- ‘(ncc)pj(,(m, U )  and we can write 
L(t,  w) as the single sum 

I 

L(t,  \ C j  = 1 L,(t, w) 
p =  1 

with (2.10) 

in which L,(t .  w) = t because x , ( t n .  (0) = 1. For p 3 2 we can find a recurrence relation 
for the terms L,(t,w) by substituting the averaged right hand side of the recurrence 
relation (2.4) for !Yp2, , ,p  in the expression (2.3bj for zp(m. w). By equation (2.4) ?VI2 , , , , )  
can be expressed in terms of correlation functions. Only terms which contain no  correla- 
tions other than self-correlations of the first kind contribute to Lp(t,  LV). In the averaged 
first term of (2.4) the first and  last points are correlated so this term can only contribute 
the pure self-interaction term, and  we see that this appears with coefficient u l ( p - l )  = 1. 
so the contribution from the first term of (2.4) is t w P - l .  The averaged second term of 
(2.4) produces a sum of terms each of which contains a Lorentz factor (-4z./311i2) 
coming from the Fq(,+ tensor in xp(m, w )  that connects the two 9 functions. Because 
the two remaining parts of the multiple integra.1 are both covered by <Y functions. the 
complete multiple integral in each term of the sum can be expressed as a product of 
two lower order L,(t. w) functions, and  we obtain the following recurrence relation for 
the terms Lp(t, wj : 

P -  I 

q =  1 

L,(t, wj) = twp- + 1 L,(t, LtJ)L,_,(t. LV) (2.1 

in which, by definition, the sum gives nothing for p = 1. When the right side of (2.1 

t 
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is substituted for L,(t, w) in the series (2.10) for L(t, w) we immediately obtain the following 
relation for L(t, w) : 

t 
l - w  L(t, w) = -+(L(t, W))* (2.12) 

from which L(t, w) can be obtained in closed form. By equation (2.12) we see that L(t, w) 
has the very suggestive property 

t 
l - w  

L(t, w) = L(  -, 0). (2.13) 

Since L(t, 0) is the sum of all pure Lorentz terms, equation (2.13) shows that the effect 
of including the self-interactions is that the polarizability a ( o )  is replaced by 

(2.14) 

This is an effective polarizability of the many-body system and it is a very natural 
generalization of the complex polarizability which appears implicitly in (1.2) : 

(2.15) 

We now complete the derivation of the fundamental dispersion formula by substitut- 
ing L(t, w )  given by equation (2.7) into the identity 

L(t, w)(l -L(t ,  w)) = L 
l - w  

(2.16) 

obtained from equation (2.12): in this way we find 

This is the generalization of equation (1.4) and the fundamental formula from which we 
shall obtain explicit expressions below. It is so far a formal result because the expression 
(2.6) is a formal one. In the following section we shall actually analyse the screened self- 
interaction r(o) and see how to interpret the result (2.17) as a physically meaningful 
relation. 

3. The screened self-interaction 

We now discuss the expression (2.6) for the screened self-interaction. As it stands of 
course the integral is certainly undefined. It may then appear that it is sufficient simply 
to make a convergent part interpretation in exact analogy with (1.10). In this case the 
screened self-interaction r(o) is just the screened radiation reaction $im(o)k:U. The 
problem is however that we need to extract a physically significant real valued reaction 
field term : as it stands the real part of (2.6) diverges. 

By representing the F(x, x’ ; o) propagator by the Neumann solution of the integral 
equation which defines it (V, Bullough 1970b) one obtains the self-interaction (2.6) as 
a formal series of integrals containing only ‘closed loops’ of unscreened F propagators 
(the reason for the usage ‘close loops’ is self-evident from the figure l(c) of V). Such closed 
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loops describe (virtual) scattering processes in which photons emerge from a single 
particle, interact with the rest of the dielectric and return to the original particle. The 
first term of this series is the unscreened self-interaction given by (1.10). The divergent 
part of this integral is related to the electron self-energy as has been shown explicitly 
(Bullough 1969a, Bullough and Caudrey 1971): the convergent part gives the radiation 
reaction which appears in (1.2) and the convergent part interpretation exhibited in (1.10) 
has been used systematically without inconsistency in the unscreened theory (111). 

But it can be seen now that the higher terms in the series expansion of the screened 
self-interaction r(w) are divergentt, and that these divergences are of a kind different 
from the electron self-energy. We can trace them back to a splitting of what were 
originally convergent terms into pairs or multiples of terms whose divergences are 
mutually compensating. This artificial procedure is forced upon us by the definition of 
the photon propagator 3 ( x ,  x’ ; o) in the exact screened theory described in 5 1, a choice 
dictated by the wish to obtain the simple form F(x, x’; 0) in the bulk approximation. 
This choice of .F(x, x’ ; 0)) makes the screened self-interaction as defined by (2.6) with 
3 replacing F inadequate: i t  still diverges and fails to include all the relevant self- 
interaction (closed loop) terms. But now it is plain that the inclusion of the remaining 
closed loop terms in the screened self-interaction is exactly what is needed to eliminate 
these divergences. 

Once the bulk approximation has been used and F introduced the matching of 
compensating divergences is no longer simple. We shall therefore appeal to the exact 
screened theory for the complete elimination of the divergences from the theory. 
However, because we shall ultimately work within the bulk approximation and use the 
results of $ 2 ,  it is instructive to see how the divergences can be eliminated from the 
lowest order divergent terms of equation (2.7). These are the self-interaction nr ’~ (w)  
from 3m2(4n)- ‘L( t ,  w) and the term C; given by (2.9d) from C(nx) .  The argument at 
lowest order goes in detail as follows. By using the integral equation that defines 
F(x,x’; w )  (equation (11) of V, now taken in the bulk approximation) we can split the 
unscreened self-interaction (1.10) off (compare Bullough 1969a) 

r(w) = / F(x, x’ ; 0)6(x - x’) dx’ + r?22(0) -  ( F(x, x’ ; w )  . @’, x ; U )  dx‘ 
4n v 

(3.1) 

To first order in nr we can write ncc 2 ( m 2  - 1)/4n and replace the first F tensor in 
C; (equation (2.9d)) by F to get 

n? - 1 
4iT 

n2r3Cj = nu2- uu: I F(x, x’; a). F(x’, x ;  a)(gz(x, x‘)- 1)  dx‘. (3.2) 

This combines with the second term in nr2r(w) taken from (3.1) to give the integral 

nccz[Tuu:I m2 - 1 F(x.x’;w).  F(x’,x;w)g2(x,x’)dx’ (3.3) 

This expression is convergent at  the lower limit (ie at the point x) because g2(x,x’) 
vanishes there. 

We shall not pursue this matching of divergences further but instead now deal with 
another difficulty of equation (3.1): the second integral is also not convergent at  its 

t The next term in the series is (m2 - 1)(4n)- ‘I F(x, x’ ;  w) . F(x‘, x ;  w) dx’  in which the integrand diverges as 
r - 4  in the neighbourhood of r = lx-x’I = 0. 
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upper limit (ie for In-x’l -, oc) where it at least oscillates finitely. This divergence 
can be systematically removed by a prescription of the bulk approximation. We can 
define the integral by Fourier transforming to k space and neglecting the surface 
contribution. We split the tensors F(x, x’ ; w )  and F(x, x‘ ; w)  into their longitudinal 
and transverse parts : the longitudinal parts are the pure Coulomb field parts and the 
transverse parts are the contributions of the radiation field so that the splitting is 
achieved as follows (I) : 

(3.4a) 

(3.4b) 

which expressions define the radiation field contributions R and 8. 
We can now evaluate the second integral of equation (3.1) as an integral in k space 

by Parseval’s theorem, and we find that the radiation field contributions alone give 
precisely +i(m(w)- 1)k;U : this combines with the first term of (3.1) in the interpretation 
(1.10) to yield the screened radiation reaction ~im(w)k~U-just as we expect it from a 
convergent part interpretation of (2.6) (and indeed as it was actually presented in V). 
There are cross terms in the second term of (3.1) between longitudinal and transverse 
parts ; but these necessarily vanish because such parts are orthogonal in k space. 

However, we have still to treat the pure Coulomb terms. In reference V such terms 
were omitted from the screened self-interactions with the understanding that they 
should really be taken together with the other divergent terms of the theory so that the 
divergences matched and mutually compensated. Here we take an opposite view and 
deliberately collect all these mutually compensating terms with their net finite parts 
into the screened self-interaction. 

Thus we must now look carefully at  the problem of finding a physically and mathe- 
matically satisfactory definition of a screened self-interaction in the exact screened 
theory. We shall use the instantaneous polarization kernel Ain(x, x‘; w)  and its ensemble 
average A(x, x’ ; w)  introduced in V and defined in equation (A.3). As discussed in the 
Appendix A is related to the refractive index by the relation 

m 2 ( o )  - 1 
471 

= uu : JV A(x, x’ ; 0) exp{im(w)ko . (r’ - x)} dx‘ (3.5) 

In equation (3.5) the integration is taken over the finite macroscopic volume I/ of the 
system (conveniently a parallel-sided slab with ko normal to the parallel surfaces?). 
In the Appendix we show that Ain satisfies the nonlinear integral equation 

Ain(x, X’ ; W )  = ll0(x, X’ ; 0) + Jv dx“ Jv dx”’Ain(x, x” ; w )  . 9(x”,  x”’ ; w )  

(IIo(x”’, X‘ ; CO) - A(,”‘, X’ ; w)). (3.6) 
Here 

&(x, x‘; 0) = p(x)Cr(w)6(x- x’)U 

(see also 111). 

t This is strictly speaking, infinite in volume but it has a well defined surface: we take the slab as a cylinder 
of infinite radius and ignore contributions from the cylindrical surfaces at infinity. 
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By taking the average value on both sides of equation (3.6) and using equation (3.5) 
we obtain 

m * ( o )  - 1 
471 

= na(w) + a(w)uu : Jv dx' 1" dx"( A'"@, x' ; w )  . .F(x'. x" : w)p(x")) , ,  

. .P(x', x" ; o) . A(x", x'" ; o) exp{ im(o)k, . (x"' - x)]  . ( 3 . 7 )  

We want to isolate the 'pure' self-interaction terms? : these are those in which the chain 
of F tensors begins and ends at the same point x. This requires that the integrands have 
a 6 function connecting the first and last point. Such terms are only contained in the 
second term of equation (3.7). Equation (3.6) shows that A'"(x.x';w) has p ( x )  as a 
factor which together with p(x" )  produces a 6 function 

p(x)p(x")  = p(x)d(x - x") + c 1 6(x - X i ) 6 ( X ' '  - x i ) .  
i ] # I  

We want to define an effective polarizability B(w) and a screened self-interaction 
~ ( w )  uu:s(w) which are related by an equation like (2.14): 

We first define /3(0): 

dxpF12.  F,, . . . . .  F P l G l 2 ,  . . p  ?, + (ncc(w))P-l 1 dx, . . . * 

p = 2  Y I' 

= u u : { /  F(x,.x';w)d(x,-x')dx' 

+n- '  !v dx' lz, dx"(p(x,)F(x,, x' ;  w ) .  A'"(n'x": . .F(x". x 1  : (U). 

(3.Yc) 

Here G 1 2 3 , , , p  = n - Y I z 3 , , , ,  = n - p ( p ( x l ) p ( x 2 ) .  . . p ( ~ ~ ) ) , ~  is the generalized correlation 
function (111) which includes all self-correlations. The expansion (3.9b) is derived in 
the Appendix. The last form ( 3 . 9 ~ )  is obtained by using equations (A.4) and (AS) and 
will be used later as a basis for approximations. 

To obtain a definition of s(w) we notice that by (3.8) the series (3.9b) is to represent 
s(w)(l  -s(o)a(w))-'. The higher powers of s(w) in the expansion of this quantity are 
naturally associated with the multiple closed loop terms that arise in (3.9b) from the 

t Evidently there are scattering processes which involve a number of self-interactions mingled with a number 
of interparticle processes. 
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contributions to each function G,,,..,, which have 6 functions of the form 6(x, - x q )  as 
factors. (Here, 'closed loop' means a loop that begins and ends at point one: G,,,,,,, 
also contains self-correlations 6(x, -xr )  with q # 1 # r.) It is therefore natural to define 
s(o) as the series obtained from (3.9b) by omitting all such contributions and given 
explicitly by (3.9b) when the functions G,,,,,,, are replaced by 

6(x, -xi") 2 6(x, -xf) 2 6(x, . . 2 6(x,-xln) 
j#i k # i  i # i  

This definition of s(o) is physically very natural although (3.8) is then only valid in the 
approximation which ignores all correlations between points of different closed loops, 
in the expansion (3.9b) for p(o). However, this really means that p(o) is more funda- 
mental in the theory than s(w). We may contrast this definition of s(o) with (2.6) for 
r(w) with F replaced by F. This expression can be obtained from (3.9b) by entirely 
omitting index one in each G,,,, , , ,  as we show in the Appendix. It is this complete 
neglect of correlations involving particle one that causes the difficulties with r (o ) .  

We must now show how to incorporate the properly defined self-interaction s(w) 
in the results of 9 2. We therefore now transform equation (3.7) to the form (2.17). We 
have already isolated a term np(w) containing the effective polarizability given by (3.9) 
from the first two terms of (3.7). We now apply the bulk approximation in parts to the 
last term of equation (3.7) : we replace the tensor P(x', x"; w )  that connects the two 
A tensors. by F(x', x";  w). We extract the screened Lorentz term (2.5) associated with 
this tensor, and evaluate the integral that multiplies this Lorentz factor in the bulk 
approximation. By using equation (3.5) and the isotropy of A in the bulk approximation 
we find that this term contributes exactly (4n/3m2(o)){(m2(w)- 1)/4n},. If this term is 
now moved to the left hand side of equation (3.7) we obtain 

(3.10) 

in which D(m, w)  denotes the terms that remain from the right hand side of equation 
(3.7) when the pure self-interaction and the screened Lorentz contribution are removed 
as discussed above?. 

The very simple transformation of (3.7) to (3.10) corresponds exactly to the derivation 
of equation (2.17) by series summation from (2.3), but now we have obtained a form in 
which s(w) replaces r(w) in the effective polarizability, which contains no other pure 
self-interaction terms, and which is free from divergences. From this result, and from 
the very similar structure of s(w) and r ( o )  (in the exact screened theory) we infer (by 
generalization) the following prescription for the elimination of the divergences from 
equation (2.17): replace every r(w) by s(w) and omit all terms which contain a closed 
loop of F tensors. 

We consider the question of finding bulk type approximations to the screened self- 
interaction below. We first derive an explicit expansion of equation (2.17). By using 

t To the integral equation (3.6) for A'" in the screened theory there corresponds the integral equation (A.4) 
which appears in the Appendix. The argument there shows that (A.4) is essentially the fundamental semi- 
classical equation (2.1) from which we start. By arguments exactly parallel to those leading from (3 .6)  to (3.10) 
applied now to (A.4) we get a term fna(m2 - 1) on the right side and by transferring this term to the left side 
we obtain a generalized Lorentz-Lorenz relation. 
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equation (2.7) to eliminate the factor (m2+2);3m2 of C(na). the right side of (2.17) takes 
the form 

(3.1 1 I 

where we have also used the property (2.13) of L(t. \v). We then observe that the on14 
self-interaction term in C(nz)  (equation (2 .9~) )  up to the third order in nz  can be taken 
together with the second order term to give C,(m)z(l +2w). which is the beginning of 
the expansion of C,(n?)' in powers of LV. Thus. up to the third order in nr (at least). 
all self-interactions can be absorbed in the effective polarizability 7 .  By using the 
prescription adopted above for the elimination of the divergences we now obtain an 
expansion of equation (2.17). This is 

This equation is an explicit form for the dispersion formula which generalizes the 
Bottcher formula (1.4). I t  is a new result, and perhaps the main result of this paper. 

In the remaining part of this section we first briefly discuss the exact screened self- 
interaction s(o) we have now obtained. Then we find a useful approximation to i t .  
The self-interaction s(w) is given implicitly by (3.9b) and is actually given explicitly by 
the right side once all multiple closed loop termst are neglected. It contains the radiation 
reaction of the isolated molecule, and in addition it has contributions representing all 
those virtual processes in which light emitted from a particular molecule interacts in 
all possible ways with the remaining molecules of the many-body system and is finally 
absorbed back by the emitting molecule. These processes are naturally represented 
by the single closed loop terms of equation (3.9b)f, and we show below that these 
combine with the one-particle radiation reaction in (3.9b) to produce both the screened 
radiation reaction (already reported as such in V) and a real valued reaction field 
precisely of Onsager's type. I t  is also interesting to note that the screened self-interaction 
can describe the ground state of a molecular fluid very much as the unscreened self- 
interaction describes the ground state energy of a single molecule of the system (Bullough 
1969a), and the expression for the screened self-interaction we have used here should 
be compared to the very similar ones appearing in the theory of the binding energy 
described ia that paper. 

Equation (3.9b) exhibits the nature of the multiple scattering processes that build 
up the total reaction field. Although this description is important for our understanding. 
it is not very useful for a detailed comparison with macroscopic theories or with experi- 
ments. With the aim of revealing the nature of the screened self-interaction s ( w )  in 
'macroscopic' form we therefore now develop a bulk type approximation to s(w). 
The argument is based on equation (3 .9~)  which has a structure very similar to that of 
equation (3.1) for r(w). 

Equation (3 .9~)  contains the average value: (p(xl)A'"(x', x" ; w)),.,. This describes 
the average 'propagation of polarization' from x" to x' under the condition that the 
point x1  is certainly occupied by a molecule; and this in contradistinction to 

f Equation (3.9b) appears to involve only 'single closed loops' like F,, . F,, . . . . . F,, . However there are 
6 functions in the G , , J , , , p  there which reduce this single closed loop to multiple closed loops like 
Flz. F,, . F,,. F,, . F,, . . . . . F,, for example (which has 3 loops). 
$ We can place F(x, x'; CO) under the average symbols or outside them: the average is taken on molecular 
sites and not on x , ,  x', or x"; but A'" depends on these sites. 



The Onsager reactionjeld as a screened self-interaction 1287 

nA(x', x" ; w)  n( Ain(x', x" ; w ) ) ~ "  which describes the same process but without any 
such condition on xl. In the bulk approximation in which replaces 9 in A(x', x"; w )  
this averaged polarization propagator is rather short range and can be further approxi- 
mated to the strictly local form (mZ - 1)(4n)- U6(x' - x") (compare (3.5)). In all cases 
where neither x' nor x" is close to x1 the constraint on the average has little effect; but 
one significant consequence of the condition that x1 is occupied is that it prevents 
molecules at x' and x" approaching arbitrarily closely to this point. We shall now 
introduce an approximation which incorporates this important property but otherwise 
neglects the condition. If we assume that Ai"(x', x" ; w )  is itself strictly local, the remarks 
above finally suggest the approximation 

Ai"(x', x"; w )  N (mz(w)-  1)(4~)-~Un-~p(x')d(x'-x"). (3.13) 

The factor n-'p(x') is included because Ain(x',x'';w) has p(x' )  as a factor and the 
average value A(x', x" ; w)  is just the approximate local form quoted above. If we now 
use (3.13) in (3 .9~)  and adopt the prescription of the bulk approximation which replaces 
9 by F we have 

40) 
1 - s(w)a(w) 

N uu : { 5 F(x, x' ; w)d(x - x') dx' 

(3.14) 

In order to obtain an expression for $0) from equation (3:14) we must remove the 6 
function from (p(x)p(x ' ) ) , ,  and thus eliminate the multiple self-interaction terms in 
s(w)(l - s(w)cc(w))-', that is eliminate the multiple closed loops in the expansion for 
this quantity, as discussed after equations (3.9). This simply means replacing this 
generalized correlation function by the ordinary pair-correlation function n2gz((x - x'l). 
To evaluate the resulting second integral of (3.14) we then split the propagators into 
their longitudinal and transverse parts by equations (3.4a, b) as we did with equation (3.1). 
Ifthe correlation length 1 is short compared to the wavelength ofthe light so that gz(r) 2: 1 
for r >> I ,  the product of the transverse parts of the propagators must to a very good 
approximation give the same contribution as in equation (3.1). The cross terms between 
the longitudinal and transverse parts do not vanish identically as they did in equation 
(3.1), but for short correlation lengths their contribution must be small so we can 
ignore it. We therefore obtain the following important result : 

s(w) N +im(w)k;U + mz(w)-l 471 J e.!).( r m-z(w)VV~)gz(r) r dv. (3.15) 

This formula is evidently approximate ; but it is particularly simple, and physically 
it seems very reasonable. The introduction of the pair correlation function gz(r) into 
equation (3.1) is quite the simplest way of taking account of the missing correlation 
and so of guaranteeing the convergence of this equation at the point x as the physical 
situation demands. It is also significant that (3.15) agrees closely with the simple result 
(3.3) of the 'divergence matching' where g z ( r )  again ensures the convergence of the 
integral. However (3.3) is, of course, a lowest order result in which no distinction is 
made between (mZ - 1)/471 and na or between 

We discuss the main result (3.12) with the simple form (3.15) for s(w) substituted in 
p(o)  in the following Q 4. 

and F. 
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4. Discussion of the generalized Biittcher formula 

I f  we ignore the terms in equation (3.12) of order (in np(o ) )  higher than the first, we get 
an equation exactly of the Bottcher form (1.4); but now we have an explicit formula 
for the effective polarizability. Equation (3.12) truncated after the first term and with 
the simple approximation (3.15) (written as do) = $m(w)ki +i (m(o)) )  for the screened 
self-interaction, has the form 

(4.1 1 
m2(w) - 1 2m2(o)  + 1 r ( w )  [ 471 ) [  3m2(o) ) = 1 - +im(w)k&(o) - i(m(w))a(o)’ 

The purely imaginary term in the denominator is the screened radiation reaction of V. 
whilst 

(4.2) 

is the coefficient ofa real valued Onsager type reaction field corresponding to Bottcher’sj. 
Notice how naturally the effective polarizability multiplying n in equation (4.1) generalizes 
both Bottcher’s a* given by (1.5) and the complex polarizability y(w) given by (2.1 5). 

The weakest point in the macroscopic argument (Onsager 1936, Bottcher 1942) for 
the Bottcher formula is the choice of the cavity radius U .  This problem is solved in  a 
very natural way by the result (4.2). in which the pair-correlation function g2(r) deter- 
mines a. Indeed, if we choose the pair correlation function so that it imitates a ‘macro- 
scopic’ cavity in a continuum by taking a unit step function for g,(r) namely 
g2(r) 1 O(r- a). P > 0 we obtain the expression 

which is almost, but not entirely, identical with the macroscopic Onsager reaction field 
(factor) given by (1.3)t. Equation (4.3) justifies (with qualifications discussed below) an 
interpretation of the cavity radius of the Bottcher macroscopic theory as an effective 
molecular diameter. Bottcher’s assumption that a is constant has indeed a region of 
approximate validity : the integral in equation (4.2) has a nonzero limiting value for 
n + 0, so the reaction field is really linear in na for small na. 

To investigate (4.1) further we ignore the screened radiation reaction and introduce 
the approximate expression for the true one-particle polarizability ~ ( o )  which is 
obtained by inverting this equation, namely 

(4.4) 

t After having written this article we discovered the paper by Linder and Hoernschemeyer (1967) on the 
‘Cavity concept in dielectric theory’. In this the reaction field is defined as the static equivalent of the sum in 
equation (3.9b), but with U / [  self-correlations omitted. Linder and Hoernschemeyer find a power series in na 
for the cavity radius by forcing their reaction field into the macroscopic form (1.3); and they obtain 

compact form (3 .9~)  directly in the form (4.2); and this takes the ‘macroscopic form’ (4.3) when (but only when) 
a - 3  is de jned  as the integral. Evidently, our result (4.2) includes contributions of all orders from the series 
(3.9b). Moreover we obtain the reaction field in the generalized form (3.15) as a part of an actual derivation of 
the Bottcher formula. This derivation both produces the cavity field factor explicitly and also exhibits the 
several corrections which must be made to the simple Bottcher formula. 

a-3 = lo “3r-4g 2(r)  dr as  a strictly lowest order result. In contrast, we obtain the (real) reaction field from the 
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It is a complication that the pair-correlation function is still not usually available as a 
function of density and temperature. However, we have its initial value by using 
g2(r )  -, exp( - q5(r)/kgT) for n -, 0 where $(r )  is the pair potential, k, is Boltzmann's 
constant, and T is the absolute temperature. From this we find the initial slope of the 
reaction field correction as a function of the refractive index : 

To indicate the order of magnitude of this correction we may consider argon at 25 "C 
with a Lennard-Jones potential. We can then use the value for the integral calculated 
by de Boer et a1 (1953) and the value c1 = 1.667 x cm3 for the polarizability at 
the (vacuum) wavelength 5876 8, determined by LarsCn (1934). We then find that the 
initial slope (4.5) is 8.01 %. 

Equation (3.12) corrects the Bottcher formula (4.1) at lowest order by the term 
C,(np(w)), and this term could give rise to a finite initial slope of ccs against m. But C2 
is small of the order O(ki12) when the correlation length 1 is small compared to the 
wavelength of the light, and the same is the case for the two-body term in J ( o )  in (1.2) 
in the unscreened theory. Thus except perhaps? close to the critical point we can neglect 
the term C, in (3.12) and we then expect that to a good approximation as will have 
zero initial slope. In contrast, the approximate polarizability c ~ L L  calculated from the 
Lorentz-Lorenz relation must then have the positive initial slope3 given by equation 
(4.5). Because C 2  = O(ki12) the first numerically important correction to equation (4.1) 
comes from the term C , ( n p ( ~ o ) ) ~  at the third order in $(U). On the basis of a comparison 
of the corresponding term in the unscreened theory with the third order surface term, 
which we have found to be negative, we expect C, to be positive. We therefore expect 
ccs to have zero initial slope and upwards curvature as a function of ncc or as a function 
of m. 

We compare these conclusions with experiments for argon, to which this theory 
should be very well applicable. We use the values of the Lorentz-Lorenz function at 
the wavelength 5876 given by Michels and Botzen (1949). These authors measured 
the refractive index at the constant temperature 25 "C as a function of density and used 
the density measurements of Michels et al (1949) performed at the same laboratory. 
Their results agree in the reliable region within approximately 0.3 % with those of 
Teague and Pings (1968) and with those of Sinnock and Smith (1969) even though 
these were obtained at  much lower temperatures. 

If we take the integral appearing in equation (4.4) to be independent of density and 
equal to its initial value we can find an approximate value for us as a function of m. 
Figure 1 shows ccs and CZLL calculated this way from the data of Michels and Botzen 
(1949). In the region m 5 1.05 the uncertainty in the experimentally determined values 
of as and clLL greatly exceeds the difference l c c s - ~ L L l  and these are omitted in figure 1 
(compare Michels and Botzen 1949). For the true polarizability of the isolated particles 
we have adopted the value determined by LarsCn who used a very accurate interfero- 
metric method. The experimental points for ccs and ccLL are shown as open and full 

t Larsen etal(l965)haveestimated thecontribution ofthe(unscreened) two-body term undercriticalconditions 
and have found that even when kol 1 the real part is still negligible. (The imaginary part is also negligible 
compared to Re(m) but is not negligible compared to Im(m) when either k,l z 1 or kol << 1.) 
2 Self-interactions accounting for this positive initial slope are included as a part of the correction to the 
Lorentz-Lorenz relation in the generalized form of equation (1.2). 
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I 1 
IO0 I IO 

Refmcttve index 

Figure 1. Approximate polarizabilities Y , , ~  (full circles) and x S  (open circles: g z ( r )  approxi- 
mated by exp( - & r ) / k B T ) )  as functions of the refractive index for argon at 25 “C and waie- 
length 5876A, calculated from the data of Michels and Botzen (1949) and Larsen (1934). 
For the curves: see the text. 

circles respectively. The curves through the experimental points have the initial slopes 
and the spacing required by the theory but otherwise are just visually fitted to the 
experimental points. Notice that the experimental values of us are very insensitive to 
the precise choice of LY within the limits determined by the experimental uncertainty of 2. 
Figure 1 shows that the experimental points can be fitted very naturally with curves 
satisfying the restraints of the theory. and we see that as(m) does indeed show an upward 
curvature. Unfortunately, the inaccuracy of the experimental data in the region of 
small refractive indices prevents a quantitative determination of the initial slope of zS 
and aLL. Nevertheless the theory seems to be supported by this experiment to the 
extent that a comparison is immediately accessible. 

We now discuss the validity of the cavity model and of the Bottcher formula for 
nonpolar fluids on the basis of our theory. The lowest order result (4.1) shows that 
there is indeed a molecular basis for the Bottcher formula when the radius of the cavity 
is taken to be an ‘effective molecular diameter’. But the Bottcher formula can be expected 
to describe the situation well only in the low density region where pair interactions 
dominate. With increasing density the ‘equivalent cavity radius’ determined by g,(r) 
changes because g , ( r )  changes. This effect does not change the physical picture that 
underlies the cavity model. I t  only rationalizes a small dependence of the cavity radius 
on the density (and the temperature). But although many-body interactions of all 
orders are taken approximately into account in the lowest order term of the screened 
theory, strict many-body terms such as C , ( n p ( ~ ) ) ~  (which are not of the reaction type) 
become important at higher densities. These corrections from the higher order terms 
of equation (3.12) constitute a far more serious obstacle to the interpretation of experi- 
ments solely in terms of the Bottcher formula. In contrast with the situation at low 
values of the refractive index, the measurements of the ‘cavity radius’ at higher refractive 
indices entirely lose their simple physical interpretation as an effective molecular 
diameter. Indeed, Bottcher’s (1942, 1952) observation that equation (1.4) can be fitted 
to experiments when a is ofthe order of an average molecular radius (rather than diameter) 
can quite possibly be explained by the upwards curvature of as as a function of M 
caused by the higher terms of equation (3.12). It should be noted, however, that the 
theory neither applies to solutions nor to anisotropically polarizable molecules-the 
cases studied by Bottcher. Nevertheless, the analysis of this paper gives good reasons 
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for believing that the restrictions on the validity of the simple Bottcher formula to the 
region of low refractive indices must also apply in these more general cases. 

5. Summary of results and conclusions 

We have recast the screened formulation of the refractive index theory, which has already 
been reported (V), into the new form (3.12) which generalizes the Bottcher formula (1.4). 
This result uses the effective polarizability p(w) defined in (3.9) which takes account of 
the interaction of a molecule with itself through interactions with the many-body system. 

The self-interaction s(o) is given implicitly by equation (3.9b) as an expansion in 
terms of the unscreened photon propagator F. Within a certain bulk type approxima- 
tion it gives the physically very natural, new result (3.15). This screened self-interaction 
has two parts : the one part is the screened radiation reaction $im(o)ki ,  which we have 
obtained previously (V) and the other part is (the coefficient of) a real valued Onsager 
type reaction field (4.2). 

At lowest order given by equation (4.1) the result (3.12) partly justifies Bottcher’s 
formula. The coefficient of n in (4.1) is an effective polarizability which generalizes 
Bottcher‘s x * .  It can be regarded as the screened analogue of the complex polarizability 
y ( o )  (equation (2.15)) which appears implicitly in (1.2) according to the simplest form 
of the unscreened theory. It is the natural interpretation of the formal quantity y(o) 
given by (2.14) and (2.6), and it reduces to y(w) for m(o) = 1. The real part of the reaction 
field of (4.1) is given by the simple and explicit expression (4.2) in which the ‘cavity’ 
is a ‘molecular cavity’ introduced naturally by an intermolecular correlation function. 
Equation (4.2) implies that the cavity radius to be used in the Onsager macroscopic 
reaction field can be interpreted as an effective molecular diameter in the region where 
the higher order contributions of (3.12) can be neglected. This follows from the form 
(4.3) which the real reaction field (4.2) takes when the correlation function is replaced 
by a unit step function-the obvious microscopic choice to imitate a macroscopic 
cavity in a continuum. However, we show that any simple one-molecule plus continuum 
interpretation of experiments gradually disappears as the refractive index increases 
much beyond unity and the ‘cavity radius’ obtained by fitting the Bottcher equation 
to experimental data for molecular fluids loses its meaning as a molecular diameter. 

In the region of low refractive indices the dispersion relation (4.1) differs from the 
Lorentz-Lorenz relation in one important respect : the (real) reaction field (4.2) is 
linear in ncc (for small ne) whilst the Lorentz-Lorenz relation employs the quadratic 
reaction field (1.6). From this we conclude that equation (4.1) offers a better description 
of the physical situation than does the simple Lorentz-Lorenz relation when the refrac- 
tive index is close to unity. 

A number of approximations underlie our arguments. One is that the theory can 
be constructed in terms of the polarizability of a single isolated molecule although 
this approximation is likely to be good for molecular fluids like, for example, argon. 
The nature of the approximation is evident from the procedure initially adopted to 
decorrelate the quantum theory : in this all quantum mechanical excitation processes 
(Raman type processes and others) are eliminated except those in which single particles 
are first excited from their ground states and then are immediately de-excited back to 
these states. This is the content of the ‘polarization diagram approximation’ (PDA) of 
reference 111. The integral equation derived there (displayed here as (A.8) in fact) 
underlies the semiclassical equation (2.1) and hence all of the present theory. 
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There is the additional move towards translational invariance which replaces the 
'exact' unscreened theory (exact only within the PDA) with the 'screened theory' by the 
bulk approximation. The divergence problem this introduces is wholly solved in this 
paper but although the bulk approximation then seems physically sound. some work 
remains to establish the validity of this translationally invariant theory in detail. 

Leaving aside its exact status, however, the screened theory (in bulk approximation) 
is valuable because of the conceptual understanding i t  provides. Conversely the formulae 
like (4.1) which can be derived from it agree so well with results of physically well 
motivated macroscopic approaches to the dielectric problem that we can infer from 
this the validity of the origins and structure of the screened theory. 

Certainly by presenting the microscopic arguments in the terms of this paper w e  
show how to remove any possibility of paradox in the two different approachea of 
Onsager and Lorentz to the problem of the internal field in a macroscopic dielectric. 

Appendix. Derivation of equation (2.3) from (2.1), of (3.6), and of (3.96) 

The instantaneous polarization density P'"(x.  w )  is related to the external field E ( x .  (9) 
by (2.1) namely. in concise notation 

lA.1)  

with 2 the scalar polarizability. F defined by (1.8). and p bj ( 2 . 2 ) .  We first deribe (3.6) 
from this equation. 

We define an average electric field 8(x. w )  by 

& = E +  I F . P  
.I i 

IA.7)  

P ( x ,  01) is the ensemble average of P"'(x. 01) and the integral is defined as discussed near 
equation (1.9). Equations ( A . l )  and (A.?) allow us to eliminate E.  We then define 
A'"(x, x' ; w )  and A ( x .  x' : w )  by 

p =  I > \ * &  p'" = .r, '4"' . e and 
. 1  

and find that with n,(x.x';  CO) = p ( x ) a ( o ) U d ( x - x ' )  (A.1) implies the equation 

( A 3 1  

We have exhibited an explicit solution of this linear equation (A.4) for A (this is 
equation (9) of V). Thus A''' is well defined, its ensemble average A is well defined, and 
we can introduce a propagator 3 ( x ,  x'; w )  dejined, and well defined, by 

This 'screens' the free field propagator F as .F. We multiply (A.4) from the right by .%. 
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integrate, and apply (AS).  We then get 

A i n . 9 = J v I I o . ( F + s  v v  5 F . A i n . F ) .  

We can now define a polarization propagator n(x, x'; w )  by 

n = no+ s s A i n . 9 . 1 1 0 .  
v v  

(A.7) 

We multiply (A.6) from the right by no, integrate, and add no. We then find the 
equation in n 

n =  no+ s s no. F . I l  
v v  

which is identical to that of 111. Alternatively we multiply (A.6) from the right by A, 
integrate, and eliminate the term i n J V J v n o .  F . A by means of (A.4). I t  follows that 

since the right side of (A.9) satisfies (A.8). (We assume that the inhomogeneous, linear, 
but singular integral equation (A.8) has a unique solution.) By substituting (A.9) for 
Il into (A.7) we obtain the equation (3.6) which concisely is 

Ai" = no+ sv JV Ain , .F . (no -A). (A.lO) 

This is a nonlinear integral equation in Ai" (since A is its ensemble average). 
As noted already the solution of (A.4) for A is exhibited in V (equation (9)). A com- 

parable result for the refractive index which is based directly on (2.1) is quoted in 111 
(equation (8)). Direct comparison shows that the refractive index can be obtained from 
A(x, x'; a))  by the relation (3.5) namely 

m2(w) - 1 
4n 

= uu : JV A(x, x' ; w )  exp(im(w)k, . (x' - x)} dx' (A. l l )  

Note that the defining relation in (A.3) exhibits A(x, x'; o) as a linear response function 
for the average field 8 (certainly not the external stimulating field E). If the response 
were local we expect A is related to a frequency dependent dielectric constant €(U) by 
A = (€ (U) -  1)U6(x-xf)/4n. Since it is not local (nor even translationally invariant) it 
should also depend on wavevectors k.  The result (A.11) shows explicitly that significant 
k must satisfy a dispersion relation : it is here that the important physical concept of the 
refractive index enters the theory. 

Equation (A.lO) has a solution for Ain as a power series in nu if and only if the 
coefficients contains the (3''" functions satisfying the recurrence relation (2.4). This 
power series is exhibited as equation (12) in V. From it we obtain (2.3) immediately by 
substituting the average value of Ai" into equation (A.11) and taking the result in the 
bulk approximation: this approximation replaces (cf equation (1 .11 ) )  .F by F and V 
by all space. This completes the derivations of both (2.3) and (2.4) from (2.1). Explicit 
expressions for the ?/ functions, the averages of the gin functions are given in V, but 
we have no need of these here. 
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Finally we derive the expansion of (3.9b). We define .F"'(x. x' : w )  with average 
3(~.  x'; w )  by 

.pi" = F +  [ [ F . Ain ..F, 
. V ' b ,  

(A .  1 2 1 

There is a simpler integral equation for .Pi": we multiply (A.6) from the left by F. 
integrate. and add F. We find 

(A.13) 

This equation has the simple Neumann expansion 

.F'" = F +  J , ? * , F . n o . F + / p , J  J' 1 F . n , . F . K I , . F +  . . . .  (A.14) 

But each no contains a factor p (and a 6 function) and the average value of a product 
of several p gives a generalized correlation function. So (A.14) reveals how simply the 
structure of .T is described in terms of these and immediately gives the result for 
{.T(x, x ' ;  w)6(x -x') dx' quoted with reference to this Appendix in the discussion 
following (3.9). 

However, (A.12) shows that the bracket in (A.6) is simply 3'" so by taking the a \  erage 
value of (A.6) we have 

v v v  

A(x, X' ; CO). .F(x', X ;  W )  dx' = Y(oJ)(~(x).  3'"(xf. X ;  w)),,~(x - x') dx'. (A.15) ?" 
This result proves the identity of ( 3 . 9 ~ )  and (3.9b) when the Neumann expansion (A.14) 
in substituted for 3'" and it also exhibits the role of correlations involving the self- 
interacting molecule (through the factor p(x) under the average sign), in the relation 
between the self-interactions s(w) and r(w) discussed after (3.9). 
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